Prolyl hydroxylase domain 2 protein suppresses hypoxia-induced endothelial cell proliferation.

نویسندگان

  • Kotaro Takeda
  • Guo-Hua Fong
چکیده

Prolyl hydroxylase domain 2 protein (PHD2) signals the degradation of hypoxia-inducible factor (HIF)-1alpha by hydroxylating specific prolyl residues located within oxygen-dependent degradation domains. As expected, endothelial cells (ECs) overexpressing PHD2 had reduced HIF-1alpha and vascular endothelial growth factor-A expression and failed to accelerate their proliferation in response to hypoxia. Surprisingly, although these cells displayed further reductions in HIF-1alpha and vascular endothelial growth factor-A expression when cultured under normoxia, there was no further reduction in EC proliferation. Thus, there seemed to be no consistent correlation between PHD2 hydroxylase-mediated suppression of HIF-1alpha expression and inhibition of EC growth. Indeed, overexpression of a mutant PHD2 lacking hydroxylase activity also greatly diminished EC response to hypoxia-induced increase in proliferation, in spite of the fact that hypoxia-induced HIF-1alpha accumulation was not affected by mutant PHD2. These data strongly suggest the existence of a hydroxylase-independent mechanism for PHD2-mediated inhibition of EC proliferation under hypoxia. In support of a physiological relevance of PHD2 overexpression, we found that endogenous PHD2 expression was significantly upregulated by hypoxia and that silencing of the Phd2 gene by RNA interference significantly enhanced hypoxia-induced EC proliferation. In conclusion, this study demonstrates that PHD2 may act as a negative feedback regulator to antagonize hypoxia-induced EC proliferation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Mechanism of Action for Hydralazine Induction of Hypoxia-Inducible Factor-1 , Vascular Endothelial Growth Factor, and Angiogenesis by Inhibition of Prolyl Hydroxylases

The vasodilator hydralazine, used clinically in cardiovascular therapy, relaxes arterial smooth muscle by inhibiting accumulation of intracellular free Ca via an unidentified primary target. Collagen prolyl hydroxylase is a known target of hydralazine. We therefore investigated whether inhibition of other members of this enzyme family, namely the hypoxia-inducible factor (HIF)-regulating O2-dep...

متن کامل

Novel mechanism of action for hydralazine: induction of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and angiogenesis by inhibition of prolyl hydroxylases.

The vasodilator hydralazine, used clinically in cardiovascular therapy, relaxes arterial smooth muscle by inhibiting accumulation of intracellular free Ca2+ via an unidentified primary target. Collagen prolyl hydroxylase is a known target of hydralazine. We therefore investigated whether inhibition of other members of this enzyme family, namely the hypoxia-inducible factor (HIF)-regulating O2-d...

متن کامل

8 Rivolta BR 46-2.indd

This study analyzed the time dependence decay of the mRNA of selected genes important for the hypoxia response. The genes chosen were the two isoforms of hypoxia-inducible factors, the three isoforms of the prolyl hydroxylase domain protein, the vascular endothelial growth factor and endothelial nitric oxide synthase. mRNA and proteins were extracted from lungs obtained from control, hypoxic an...

متن کامل

Prolyl hydroxylase 2 deficiency limits proliferation of vascular smooth muscle cells by hypoxia-inducible factor-1 -dependent mechanisms

Schultz K, Murthy V, Tatro JB, Beasley D. Prolyl hydroxylase 2 deficiency limits proliferation of vascular smooth muscle cells by hypoxia-inducible factor-1 -dependent mechanisms. Am J Physiol Lung Cell Mol Physiol 296: L921–L927, 2009. First published March 20, 2009; doi:10.1152/ajplung.90393.2008.—Arterial O2 levels are thought to modulate vascular smooth muscle cell (VSMC) proliferation and ...

متن کامل

Cell Biology/Signaling Interferon-Gamma Induces Prolyl Hydroxylase (PHD)3 Through a STAT1-Dependent Mechanism in Human Endothelial Cells

Objective—We previously reported that interferons (IFNs) regulate transcription of HIF-1 in human endothelial cells (ECs), linking immunity and hypoxia. Prolyl hydroxylases (PHDs) regulate expression of HIF-1 in response to hypoxia. We examined whether IFNs affect PHD expression and whether PHDs regulate the EC response to IFNs. Methods and Results—Human cell cultures were treated with various ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 49 1  شماره 

صفحات  -

تاریخ انتشار 2007